COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

PROJECT Moreton Bay Rail Link COORDINATES 501815.5 E; 6985822.6 N LOCATION Bridge over Bruce Hwy, Abutment A, Bridge 6, Ch.4732 DATE STARTED 10/5/11 GRID DATUM MGA94 Zone 56 PROJECT No FG5921 SURFACE R.L. 10.30m PLUNGE DATE COMPLETED 10/5/11 JOB No 250/120/3 HEIGHT DATUM AHD BEARING DRILLER R&D Drilling Pty Ltd R.L. RQD INTACT DEFECT ADDITIONAL DATA STRENGTH **SPACING** ()% (m) DEPTH (m) MATERIAL AND **DESCRIPTION** CASSIENT CONTRACTOR CO WEAT WEAT CHAPT CH CORF **TEST RESULTS** REC % 0 Silty CLAY (Topsoil) Based on Driller's logs only Red, moist, soft 9.30 Clayey Gravelly SAND (Residual) 1,3,4 SPT Red, moist, medium to coarse grained, (\$M/SP) Gravel fraction is subangular, sizing 8.30 3,10/HB Conglomeratic SANDSTONE SP1 N>50 Medium to coarse grained, massive, poorly cemented sedimentary rock mainly FG5921 MORETON BAY RAIL LINK.GPJ <<DrawingFile>> Datgel CPT Tool gINt Add-In 06/10/2011 14:45 comprising of sand-sized particles XW: Generally exhibits engineering properties of yellow to brown red, moist, very dense, clayey gravel. XW 14,30/75mm С SPT Subangular quartzite fragments sizing <60mm 6.30 HW: White grey to red iron staining, coarse grained, massive, very low strength. 100 Contains high strength cobble-sized quartz fragments <70mm, up to 5m depth. Becoming more clayey with high iron enrichment below 5m. -J @ 40° 100 Defects: Joints @ 40° (2/m) - Joint @ 70° (1-2/m) HW Defect surfaces are planar, slightly rough, closed, clay infilled or iron stained -J @ 70° LIB_01A.GLB Log A_ENGINEERING BOREHOLE LOG W LITHOLOGY 100 2.45 J @ 90° CLAYSTONE -8 Fine grained sedimentary rock mainly comprising of clay-sized particles

MW: Red brown to black, fine grained, 100 -J@5-10° laminated, very low to low strength. Contains mudstone interbeds in parts. MW Defects: - Bedding / lamination partings @ 5-10° (2-3/m)J @ 30° with CLy Is(50) = 0.20MPa0 (2-3/11) - Joint @ 30° (1/m) - Joint @ 90° (1/m) Is(50) = 0.45MPaх 100 FeSt CLy band 0.30 LOGGED BY REMARKS_ BW

ENGINEERINGBOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

BOREHOLE No _____BH10 ___

SHEET __2__ of __2__

REFERENCE No ____H11020 ___

PROJECT Moreton Bay Rail Link															
			ridge over Bruce Hwy, Abutment A, Bridge 6, Ch.4732												
JOB I						SURFACE R.L10.30m_ PLUNGE DATE STARTED10/5/11 HEIGHT DATUMAHD BEARING DATE COMPLETED10/5/11			DRILLER R&D Drilling F						
	R.L. (m)		POD					IN	TACT	DEFE	СТ			DITIONAL DATA	
DEPTH (m)		LG LG I BORING DRII ING		ш	MATERIAL	OGY	ERIN			(mn	n)	IC LO		AND	ES
-		AUGER CASING WASH	CORE	1 ~	DESCRIPTION	LITHOLOGY	USC	ᇤᆽᆿ	ENGTH	200 200 200	600 2000	GRAPHIC LOG	TE	EST RESULTS	SAMPLES
10	0.30	111	REC %	0)	MUDSTONE		حادا						L@ 20°		0 -
-			100		Fine grained sedimentary rock mainly comprised of mud-sized particles MW: Black, laminated, medium to mainly high strength.								— J @ 20°		
- 11 - 11 					Defects: - Bedding / lamination partings @ 5-10° - Joint @ 20°									Is(50) = 0.95MPa Is(50) = 0.93MPa	o -
F					- Joint @ 80°								—J @ 80°		-
- - - 12			400		Defect surfaces are mainly medium spaced, planar, smooth, closed, clay infilled or minor iron stained.									Is(50) = 1.63MPa Is(50) = 1.26MPa	0 X
			100	+			MW							Is(50) = 3.07MPa Is(50) = 4.05MPa	o x
F														,	-
13															-
														Is(50) = 2.32MPa Is(50) = 1.44MPa	o x
			100												-
E 14			100	\top										Is(50) = 2.07MPa	0.
14														Is(50) = 0.98MPa	x
E	-4.30														-
-13 -14 -15					SANDSTONE SW: Grey, medium to coarse grained, massive with slight laminations, high strength.									Is(50) = 1.29MPa Is(50) = 0.73MPa	0 X
			100		Contains intermittent bands of mudstone and claystone in parts.								— J @ 90°	Is(50) = 1.59MPa Is(50) = 2.10MPa	0 -
F 40					Defects:									Is(50) = 1.25MPa	0 .
- 16					- Bedding / lamination partings @ 5-10° - Joint @ 20°								CLystone ba	Is(50) = 1.80MPa	x
-					- Joint @ 85° 		sw								
F			100	\vdash	Defect surfaces are irregular, slightly rough, close and clay infill.								— J @ 20°	I-(50) - 4 00MD-	
17														Is(50) = 1.86MPa Is(50) = 2.56MPa	0 X
E														In/EO) = 4.04MB	
-														Is(50) = 1.91MPa Is(50) = 1.55MPa	о - х
- - 18															
-16 -17 -18 -19	-7.91		100		Borehole terminated at 18.21m	\vdash			: : : : -						
E l															-
-															
- 19										- : : :					
£									=						
[
8 8 1 <td>LOGGED BY</td> <td><u> </u></td>							LOGGED BY	<u> </u>							
ĸ	LIVIARN	·											.	BW	

		177, 221, 277, 277	
Project Name	Moreton Bay Rail Link (MBRL)		
Project No	FG5921	Date	10/05/11
Borehole No	BH 10	TMR H No	11020
Location	Bridge over Bruce Hwy	Start Depth (m)	4.00
Detail	Structure	Finish Depth (m)	18.21
Chainage	473029 Approx	Submitted By	BW
Remarks			
	85		0.9
			*
7			
Lie W	° 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	man de la company	o o
			2
	OO		
	E OF		
			0.63
0 100	200 300 400 SCALE 1:5	5 00 600i	mm

Project Name				
Borehole No				10/05/11
Location Detail Structure Finish Depth (m) 18.21				
Detail Structure		BH 10	<u> </u>	
Chainage Remarks Submitted By BW END HOLE 0 100 200 300 400 500 600mm				
Remarks END HOLE 0 100 200 300 400 500 600mm				
END HOLE 0 100 200 300 400 500 600mm		1030 Approx	Submitted By	BW
0 100 200 300 400 500 600mm	Remarks			
		CAN STATE OF THE S		
JUALL I.J	0 100	200 300 400 SCALE 1:5	500 600r	mm

CORE PHOTO LOG
DEPARTMENT OF TRANSPORT & MAIN ROADS
Geotechnical Branch

GEOT043/1