COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

QLD_DMR_LIB_01.GLB Log A_ENGINEERING BOREHOLE LOG FG5779 IPSWICH MWY_ROCKLEA TO DARRA.GPJ <<DrawingFiles> Datgel CPT Tool gilht Add-in 14/02/2011 17:34

ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

BOREHOLE No __BH108__

SHEET __1_ of __4__

REFERENCE No __H10892__

PROJ	ECT	T <u>Ipswich Motorway Upgrade - Rocklea to Darra</u>													
LOCA	TION	_0	<u>xley</u>	<u> Creek</u>	- <u>L</u> e	<u>ft Bank</u>		COORDINATES 498951.7 E; 6951115.3 N							
PROJECT No		_F	<u>G57</u>	<u> 79</u>		SURFACE R.L. <u>3.23 m</u> PLUNGE <u>-9</u>	<u>0 ° </u>	-	DATE	STA	ARTED _	27 <u>/</u> 10	<u>0/10</u> GRID DATUM <u>GDA94</u>		
JOB N	lo	_14	<u> 10/L</u>	J16/902		HEIGHT DATUM <u>AHD</u> BEARING		-	DATE CO	OMP	LETED _	27 <u>/</u> 10	D/10 DRILLER R&D Drilling F	ty Ltd _	
o DEPTH (m)	R.L. (m)	AUGER CASING	ROCK ROLLER CORE DRILLING	RQD ()% CORE REC %	SAMPLE	MATERIAL DESCRIPTION	nsc	WEATHERING	INTACT STRENGTH	H	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES TESTS	
- - - - - - - - - - - - - - - - - - -	1.73				A	Silty CLAY Red-brown, moist, mainly firm. Medium to high plasticity. Minor trace of plant material. Becoming sandy at base.	((CI- :H)					Based on Drillers logs only up to 1m depth.	SPT -	
- 2					В	Brown to dark grey, moist, mainly loose. Sand fraction mainly fine to medium grained.							2,2,3 inferred GWT	SPT	
3 3 					С			SP- M)					1,1,4 N=5 — Dark grey, sandy clay and peat (based on Driller's Logs).	SPT -	
-	-1.53				D	Silty CLAY (Estuarine?)							5,4,3 N=7	SPT	
-5 					F	Dark grey to black, moist, mainly very soft to soft. soft to firm High plasticity. Contains high organic content. Minor trace of decomposed carbonaceous materials (peat / wooden material).							RW,RW,HW N<1 su=32kPa p'c=90kPa OCR=2.2	SPT -	
- - - - - - - 7					н		(CH	I/OH	1)				Sample slip - su=25kPa p'c=90kPa	U100 -	
- - - - - - - - - - - - - - - - - - -	5 70				J								OCR=1.9 RW,RW,2 N=2	SPT	
- - - - - - - - - - -	-5.78				К	SILTSTONE FINE GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF SILT SIZED PARTICLES.	×	(W					4,11,17 N=28	SPT	
10						(See over)				+					
RE	MARK	s_ _	_					· —	 	 		 	LOGGED BY BW / SG		

QLD_DMR_LIB_01.GLB Log A_ENGINEERING BOREHOLE LOG FG5779 IPSWICH MWY_ROCKLEA TO DARRA.GPJ <<DrawingFiles> Datgel CPT Tool gilht Add-in 14/02/2011 17:34

ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

BOREHOLE No ___BH108__

SHEET __2_ of __4__

REFERENCE No ___H10892__

PROJE	CT	T <u>Ipswich Motorway Upgrade - Rocklea to Darra</u>													
LOCAT	_0	<u>xley</u>	<u>Creek</u>	<u>- Le</u>	<u>ft Bank</u>	COORDINATES 498951.7 E; 6951115.3 N									
PROJECT No		_F	<u>357</u>	79		SURFACE R.L. <u>3.23 m</u> PLUNGE <u>-90 °</u>	_		DATE S	TARTED _	<u> 27/10</u>	<u>)/10</u> G	GRID DATUM GDA94		
JOB No)	_14	<u>10/L</u>	1 <u>16/902</u>		HEIGHT DATUM <u>AHD</u> BEARING	_	-	DATE COM	PLETED _	<u>27/10</u>	<u>0/10</u>	DRILLER	R&D Drilling I	Pty Ltd _
лтн (m)	R.L. (m)	AUGER CASING	SORE DRILLING	RQD ()% CORE REC %	SAMPLE	MATERIAL DESCRIPTION	USC	WEATHERING	INTACT STRENGTH ボチェヌーラゴ	DEFECT SPACING (mm)	GRAPHIC LOG		ADDITIONAL AND TEST RESU		SAMPLES TESTS
- 10 	-8.03			NEO %	L	SILTSTONE (Cont'd) XW: Generally exhibits engineering properties of grey to dark grey, fine grained, very stiff to hard, clayey silt / silty clay. Relict rock fabric and structure visible throughout.		w			0			20,24,31 N>50 15,17,26	SPT -
					N	MUDSTONE FINE GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF CLAY SIZED PARTICLES XW:Generally exhibits engineering properties of black, moist, mainly very stiff to hard silty clay. Contains interbeddeds of siltstone; slightly fissiling on drying.	×	×w						N=43 10,15,20 N=35 7,10,14 N=24 20/100mm,HB N>50 12,12,12 N=24 9,17,19 N=36	SPT
- 18 18 	13.78				U	Sandy SILTSTONE HW: Generally exhibits engineering properties of greenish-grey, moist, fine grained, hard, sandy silt. Relict rock fabric and structure visible throughout; minor clay fraction in parts. Becoming more sandy below 20m depth. (See over)	Н	iw					30/120	29,30/100mm N>50 24,30/85mm N>50 0mm,30/80mm N>50	SPT -
20						(See over)	_							LOGGED BY	
REN	MARK	s_ _					_	- -						BW / SG	

QLD_DMR_LIB_01.GLB Log A_ENGINEERING BOREHOLE LOG FG5779 IPSWICH MWY_ROCKLEA TO DARRA.GPJ <<DrawingFiles> Datgel CPT Tool gilht Add-in 14/02/2011 17:34

ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

BOREHOLE No __BH108__

SHEET __3_ of __4__

REFERENCE No __H10892__

COCATION Output Greek Left Bank Cocation Coca	PRO.		Ipswich Motorway Upgrade - Rocklea to Darra												
149U16902 HEIGHT DATUM _ AND _ BEARING															<u>.3 N</u>
RL															
MATERIAL DESCRIPTION SPECIAL	JOB	NO .	_140/0	<u> 16/902</u>		neight DatowiAnd BEARING				IPLET		21/10	/10_	DRILLER RAD DIMING	- <u> </u>
Sandy SiLTSTONE HW; (Contrd)		R.L. (m)	~S				(1)	INTAG	CT GTH	DEFE	CT ING	(J)	A	DDITIONAL DATA	
Sandy SiLTSTONE HW; (Contrd)	E) H		SCLE			MATERIAL	ERIN			(mn	n)	СГО		AND	ပ္သ
Sandy SiLTSTONE HW; (Contrd)	DEP.		띪쯘矢띪	CORE	MPLE	DESCRIPTION	S H		یے.	0.08	000	ХАРНІ		TEST RESULTS	MPLE
17.28 (84) SANDSTONE Fine TO MEDIUM GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF SAND SIZED (850) = 0.06MPp X 0.06M	20	-16.78	49 <u>8</u> 8	REC %	-	Sandy SII TSTONE HW: (Contid)	5 ≥		1/1	1111	1	ß		30.30/100mm	-
SANDSTONE FINE TO MEDIUM GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF SAND SIZED PARTICLES PA	-				VV	Sandy SIETSTONE TW. (Cont. d)	HW		: : =						581
FINE TO MEDIUM GRAINED SEDIMENTATION 18(50) = 0.03MPa X No. COMPOSE DIMENTATION No. 1 18(50) = 0.05MPa X 18(50) = 0.05MPa		-17.28		(84)		SANDSTONE								interbed, approx. 250mm	-
## PARTICLES ## Pa				` ,									UIICK		x =
Deplays cracking on drying Deplays cracking on drying Cenerally defects are rare Cenerally continued Cenerally conti	- 21					PARTICLES								e Diokeii , ,	0 -
Cenerally defects are rare. 0.0						very low strength.									
100 Get 100						Generally defects are rare.	MW				J: :			Io(E0) - 0.06MPa	
19.38	-			100										Is(50) = 0.10MPa	
19.38 Slightly rough, open and clean. SliLTSTONE MW: Mottled grey, bedded with faint laminations, fine grained, mainly very low to low strength. 100 C(25) Cenerally defects are rare. Diffiling induced bedding/ lamination partings S (3 (3 m) Joint@45° (1/m) Defects are mainly medium spaced, planar, slightly rough, open and clean. MW Pale grey to dark grey, massive with faint laminations, very low to low strength. 100 10	- 22			(81)		• •				:					-
SILTSTONE		-10 38													
Iarinations, fine grained, mainly very low to low strength. Iarinations, fine grained, mainly very low to low strength. Iarinations, strengt		13.50								:	: :		Irregular f	racture @ 45°	
100 Cenerally defects are rare. Colling induced bedding/ lamination partings Cenerally defects are mainly medium spaced, planar, slightly rough, open and clean.	23					laminations, fine grained, mainly very low to low							Iron stain		
- Dilling induced bedding/ lamination partings	-			100		strength.									
Second process Seco				(25)											
Defects are mainly medium spaced, planar, slightly rough, open and clean. Defects are mainly medium spaced, planar, slightly rough, open and clean. Is(50) = 0.12MPa Is(50) = 0.11MPa Is(50) = 0.11MPa Is(50) = 0.05MPa, X Is(50) = 0.13MPa Is(50) = 0.15MPa Is(50)						@ 5° (3/m)								Is(50) = 0.09MPa	x =
Slightly rough, open and clean. Slig	- 24 -					, ,	MW							Is(50) = 0.12MPa	0 -
100 100	[slightly rough, open and clean.]
100 (73)															
100 100	25			100										IS(50) = 0.11MPa	
MUDSTONE MW: Pale grey to dark grey, massive with faint laminations, very low to low strength. Becoming greyish-brown and iron stained below 29.25m depth, approx. 900mm long; iron staining in parts. Numerous drilling-induced partings. Numerous drilling-induced partings. Numerous drilling-induced partings. Numerous drilling-induced partings Numerous drilling-induc	-	-22 13		(73)										L (50) 0.05MD	
Numerous drilling-induced partings. Numerous drilling-induced part	-	22.10											Brown iro		
Becoming greyish-brown and iron stained below 29.25m depth, approx. 900mm long; iron staining in parts. Numerous drilling-induced partings.													·	D = 1.86t/m ³ : MC = 15.6%:	
29.25m depth, approx. 900mm long; iron staining in parts. Numerous drilling-induced partings. Is(50) = 0.18MPa	26													UCS=1.13MPa	
100				100											0 -
100				(78)		Numerous drilling-induced partings.]]			Is(50) = 0.05MPa	
100						Ç , Ç								13(30) = 0.1 HWI a	
100 (70) Is(50) = 0.18MPa	[]			(27)						H					
100 (70) Is(50) = 0.18MPa										H					
100 Is(50) = 0.18MPa x Is(50) = 0.11MPa o Is(50) = 0.11MPa o Is(50) = 0.11MPa x Is(50) = 0.11MPa x Is(50) = 0.11MPa x Is(50) = 0.11MPa o Is(50) = 0.11MPa							MW						— HF7		
(70)	- 28									K					-
(70)	-			100						H	: :				
See over	-														
100	‡													ıs(50) = 0.11MPa	0 =
100 Is(50) = 0.11MPa x Is(50) = 0.11MPa x o c c c c c c c c c	29									5					
														Is(50) = 0.11MPa	
REMARKS LOGGED BY	-			(50)										ıs(50) = 0.11MPa	0 -
NEW/ WOOD						(See over)									
	R	EMARK	S												

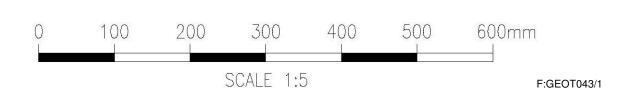
ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

BOREHOLE No __BH108__

SHEET __4_ of __4_

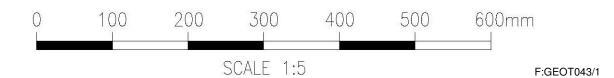
REFERENCE No __H10892__


PRO.			<u>vich Moto</u> ey Creek	 S498951.7 E; 6951118	- – – - · 5 3 N					
				ID DATUM <u>GDA94</u>	<u></u>					
JOB I					HEIGHT DATUM AHD BEARING				DRILLER R&D Drilling	Pty Ltd
00 DEPTH (m)	R.L. (m)	AUGER CASING ROCK ROLLER CORE DRIFTING	RQD () % CORE REC %	SAMPLE	MATERIAL DESCRIPTION	USC	INTACT DEFECT STRENGTH SPACION (mm)	AC	DDITIONAL DATA AND TEST RESULTS	SAMPLES
-	-27.28		1120 //		MUDSTONE (Cont'd) MW: Becoming dark grey, highly fractured, extremely low to very low strength.				Is(50) = 0.11MPa Is(50) = 0.08MPa	x -
-31			100		Generally defects are rare. - Drilling induced lamination partings @ 5-10° (2/m) - Joint / irregular fracture @ 45° (1/m) Defects are close to wide spaced, planar, smooth, closed and open with clay infill or iron stained.			XW CLy z	one	
			100 (8) (71)	X		MW		XW CLy z	one	- - - - -
DARKA, G-CLOWINGFIRES - Datigle CPT 100 gNN Add-th 4/0/2011 17:34			100					— Yellow-bro	wn iron stained band.	
35 35	-32.08		100		Borehole terminated at 35.3m			Siltstone II	nterbeds	
SOWICH MWY_KOCKEA TO DARKA,					Dorenole terminated at 33.3m					
- 37										
OLD DWALLE OF A ENGINEERING BOXEHOLE LOG 1997/9 PSWICH MWY KOCKERA OLD 1997/9 PSWICH MWY KOCKERA										
	EMARK	s						 _	LOGGED BY BW / SG	1

Project: <u>Ipswich Motorway Upgrade - Rocklea to Darra</u>

Page 1 of 2

Borehole No: BH 108
Start Depth: 20.50m
Finish Depth: 35.30m
Project No: FG5779
H No: H10892



Project: **Ipswich Motorway Upgrade - Rocklea to Darra**

Page 2 of 2

Borehole No: BH 108
Start Depth: 20.50m
Finish Depth: 35.30m
Project No: FG5779
H No: H10892

