COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

TMR JAN 15.GLB Log A_ENGINEERING BOREHOLE LOG W LITHOLOGY FG6184 - BOREHOLES.GPJ <<DrawingFile>> Datgel CPT Tool gINt Add-in 04/03/2015 10:51

ENGINEERINGBOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/8-2014

BOREHOLE No __BH133__
SHEET __1_ of __4__
REFERENCE No __12078___

PROJEC					Geotechnical Investigation - Stage 1				 DINATES <u>720977.7 E; 7657952.</u>	
		G618	84	. -	SURFACE R.L. <u>12.44m</u> PLUNGE			DATE STARTED <u>4/10/14</u>	GRID DATUM GDA 94 /MG/	<u> </u>
R.	L.		DOD	· — -	HEIGHT DATUM <u>AHD</u> BEARING	 	 	INTACT DEFECT		<u> </u>
DEPTH (m)	1)	BORING DRILLING	()%		MATERIAL	ΛĐO	THERING	STRENGTH SPACING (mm) 500000000000000000000000000000000000	ADDITIONAL DATA AND	S
o 12	병	등등등	CORE REC %	SAMPLE	DESCRIPTION		USC	GRAPH	TEST RESULTS	SAMPLES
-	1.94				Gravelly CLAY (FILL)		(CI)			-
- - -	1.54				Silty CLAY (ALLUVIUM) Pale orange-brown and grey, dry to moist,					- - - -
- -1 -				Α	stiff to very stiff. High plasticity.				4,7,8 N=15	SPT T
- - -									10-15	- - -
- - -2 -									457	-
- - -				В			(CH)		4,5,7 N=12	SPT =
- - -							(011)			- - - -
-3 - - -				С					5,6,10 N=16	SPT
- - -								<u> </u>		-
- 4 				D					3,5,8	SPT -
4.60	7.84				Cife Classes CAND (ALL INVILIA)				N=13	- -
- - - - 5					Silty Clayey SAND (ALLUVIUM) Pale brown and grey, moist, medium dense. Fine grained.					-
- - -				Е			(SC)		6,9,10 N=19	SPT -
- - -										- - - -
-6 -6.20	6.24			F	Silty CLAY (ALLUVIUM)				6,4,7_ N=11	SPT]
- - - -					Brown and grey, moist, stiff to very stiff. High plasticity.					-
- - - -				G					5,7,11 N=18	SPT -
- - - -									N=18	-
- - - -8							(CH)			-
- - -				Н			(СП)		5,7,9 N=16	SPT -
-9 - - -				J					3,5,8 N=13	SPT
										-
7 10 REM	ARKS#	# San	npl <u>e</u> f <u>ail</u> e	d alo	ong existing defect surface.			: : : : : : : : : :	LOGGED BY	
	-								ME	

TMR JAN 15.GLB Log A_ENGINEERING BOREHOLE LOG W LITHOLOGY FG6184 - BOREHOLES.GPJ <<DrawingFile>> Datgel CPT Tool gINt Add-in 04/03/2015 10:51

ENGINEERINGBOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/8-2014

BOREHOLE No __BH133 __

SHEET __2__ of __4__

REFERENCE No __12078 ___

	d Geotechnical Investigation - Stage 1 Overpass Pier 1; CH: 5599m;		NATES
PROJECT No_FG6184	SURFACE R.L. 12.44m PLUNGE HEIGHT DATUM AHD BEARING	DATE STARTED 4/10/14	GRID DATUM GDA 94 /MGA Zone 55
R.L. (m) RQD () %	MATERIAL DESCRIPTION	USC C C (mm) C C C C C C C C C C C C C C C C C C	ADDITIONAL DATA AND TEST RESULTS RAWLES RAW
10 2.44 < 0 > 0 REC % 0	Silty CLAY (ALLUVIUM)		4,6,8 N=14 SPT
	11.50m: Trace fine grained sand.		4,4,7 N=11
M			5,7,10 N=17
- 13 13		(CH) +	5,6,9 N=15
P			8,8,11 N=19 SPT -
Q Q -3.36			5,7,9 N=16
15.80 -3.30 -16 	Silty SAND (ALLUVIUM) Pale grey, moist, medium dense. Fine to medium grained.		3,4,7 N=11
		(SM)	13,11,14 N=25
T	Silty CLAY (RESIDUAL?) Pale grey and brown, moist, very stiff. High plasticity.		8,9,12 N=21 SPT -
		(CH)	5,7,9 N=16
REMARKS <u># Sample failed ale</u>	ong existing defect surface.		LOGGED BY ME

TMR JAN 15.GLB Log A_ENGINEERING BOREHOLE LOG W LITHOLOGY FG6184 - BOREHOLES.GPJ <<DrawingFile>> Datgel CPT Tool gINt Add-in 04/03/2015 10:51

ENGINEERINGBOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/8-2014

	JECT					Geotechnical Investigation - Stage 1							
	ATION					Overpass Pier 1; CH: 5599m;						ORDINATES <u>720977.7 E; 7657952</u>	
JOB 1						SURFACE R.L. <u>12.44m</u> PLUNGE _ HEIGHT DATUM <u>AHD</u> BEARING _							
0001			_			TEIGHT DATOM _ALD BEARING _					10/1	JALLER SAMI BINING	
	R.L. (m)	5	S S	RQD ()%					G	INTACT DEFECT STRENGTH SPACING	ڻ ق	ADDITIONAL DATA	
DEPTH (m)		S BORING	Z Z			MATERIAL	\ 06Y		ERI	STRENGTH SPACING (mm)	GRAPHIC LOG	AND	S
DEP		E SE	뷔	CORE	SAMPLE	DESCRIPTION	LITHOLOGY	ွှင့်	EATH	: ::-=	3APH	TEST RESULTS	SAMPLES
20	-7.56	₹0≥0	3	REC %	/S	Silty Sandy CLAY (RESIDUAL)		: ا ک	≥ "		5		/S ==
-					٧	Pale brown and grey, moist, very stiff.				: : : : : 		5,8,9 N=17	SPT =
-						High plasticity.		(CF	H)				-
-													-
21.10	-8.66								1	<u> </u>	$\downarrow \downarrow$		_
					W	Silty SAND (RESIDUAL) Pale brown and grey, moist, medium dense.						9,7,8 N=15	SPT -
-						Medium grained.		(SN	M)	<u> </u>			-
21.90	-9.46								1	<u> </u>]
- 22					Х	Silty CLAY (RESIDUAL) Pale brown and grey, moist, very stiff.						6,8,10	CDT -
-					^	High plasticity. Trace fine grained sand.		(CF	H)			N=18	SPT -
22.80	-10.36					Trace into granted carra.				:::::: :			_
- 23	-10.50					Sandy Silty CLAY (RESIDUAL)			T		1		-
- 23					Υ	Pale brown and grey, moist, very stiff. High plasticity.				: : : : : : : : : : : : : : : : : : : :		8,10,13	SPT -
-												N=23	
								(CL	_/				-
- - -24								(CF	(٦	<u> </u>			
					Z							4,6,11 N=17	SPT =
-										<u> </u>		N-17	_
24.80	-12.36								1	<u> </u>			
- - 25						MICRODIORITE (Kgwu) HW: Brown, medium to coarse grained,	+			<u> </u>			-
-					AA	very low strength.	+	1.11/	۸,			19,25,30/120	SPT -
-							$\begin{bmatrix} + \end{bmatrix}$	HV	'V	: : : : : : : : : : : : :			-
-	-13.56						+ , +						
26 <u>-00</u> -	-13.30	1 4		(38)	AB	MICRODIORITE (Kgwu)	Ħ		Ť		\vdash \dagger	30/30- Is(50) = 0.78MPa; #	DSPT (26.05m)-
-						MW: Grey and brown, fine grained, massive, medium to high strength.	++				Ш	. ,]
-				(38)		,	+1				Ħ	-26.42m-26.60m: HFZ; Is(50) = 1.62MPa; #	D
-				()			L+1	MV	N			13(30) - 1.02Wi a, #	(26.70m)_
- 27 - -							+					— 27.08m: Clay seam, 10°, 10mm.]
- - -27.53	-15.09						++				-		-
-						MICRODIORITE (Kgwu) SW: Grey, fine to medium grained,	+-					_	-
- - -28						massive, very high strength.	++					Is(50) = 9.87MPa Is(50) = 7.49MPa	A _(27.85m) - D _(27.90m)
-				100		Defects: - Js; 0°-30° (2/m); PI/Ro, TI;	[+]					— 28.20m: Clay seam, 5°, 20mm.	(27.50.11)
-				(100)		•	+						
-							++	SV	v			Is(50) = 10.54MPa Is(50) = 4.35MPa	A _(28.63m) D _(28.68m)
- 29							+					UCS=88.5MPa	(25.5011)
							+]						
-							+++					Is(50) = 5.73MPa; #	
-							[+]					15(00) - 0.7 31VIPa, #	(29.60m)
30		(0 # Si	<u></u>	nlo foile	d ala	and existing defect surface	$\Gamma + 1$				Ш	LOGGED BY	
RI	EMARK	S <u># 58</u>	11[]	pie raile	u aic	ong existing defect surface.						ME	

TMR JAN 15.GLB Log A_ENGINEERING BOREHOLE LOG W LITHOLOGY FG6184 - BOREHOLES.GPJ <<DrawingFile>> Datgel CPT Tool glNt Add-In 04/03/2015 10:51

ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/8-2014

BOREHOLE No BH133 SHEET _4_ of _4_ REFERENCE No _12078 ___

PROJECT	_Mack	ay Ring F	Road	Geotechnical Investigation - Stage 1				
LOCATION	Peak_	<u>Downs H</u>	wy C	<u> </u>			COORDINATES <u>720977.7 E; 7657952.6 N</u>	<u> </u>
PROJECT No	F <u>G61</u>	84		SURFACE R.L. <u>12.44m</u> PLUNGE _			DATE STARTED <u>4/10/14</u> GRID DATUM <u>GDA 94 /MGA Z</u>	<u> </u>
JOB No				HEIGHT DATUM <u>AHD</u> BEARING _			DATE COMPLETED 6/10/14 DRILLER Saxon Drilling	
R.L. (m) HL 430 30 -17.56	AÜGER CASING WASH BORING CORE DRILLING	RQD ()% CORE REC%	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	INTACT DEFECT STRENGTH SPACING (mm) O J J H A W A W A W A W A W A W A W A W A W A	TESTS
- 17.50				MICRODIORITE (Kgwu) SW: (Cont'd)	+			-
- - - - - -		100 (74)		Sw. (Conta)	+	SW	N = -30.51m-30.70m: BZ;	-
-31 31.19 -18.75		100			+			
- 32 32 33 34 35 36 37 37 38 39 39				Borehole terminated at 31.19m				
	S <u># Sa</u> r	nple faile	d alo	ong existing defect surface.			LOGGED BY	
							ME ME	

DEPARTMENT OF TRANSPORT & MAIN ROADS Geotechnical Branch 35 Butterfield Street, HERSTON Qld 4006 Phone 07 3066 3336

Project No FG Borehole No BH Location Pea Detail Pie Chainage 559 Remarks	k Downs Hwy Overpass	Start Finis	R H No t Depth (m) sh Depth (m) mitted By	06/10/14 12078 26.0 31.19 M.Ensor
Borehole No Location Pea Detail Chainage Remarks	k Downs Hwy Overpass 1 9m	TMR Start Finis	R H No t Depth (m) sh Depth (m)	12078 26.0 31.19
Location Pea Detail Pie Chainage 559 Remarks	k Downs Hwy Overpass 1 9m	Start Finis	t Depth (m) sh Depth (m)	26.0 31.19
Detail Pie Chainage 559 Remarks	1 9m	Finis	sh Depth (m)	31.19
Chainage Remarks	9m			
Remarks	28.2.7	Subr	mitted By	M.Ensor
2 8 8 2 2 8 S 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28.27		And a second	
N	28.27			
N	2827			
N	2827			
N	28.2			
			A	
			\triangle	
				3
	31.18			-
0 100	000 000	400 500	200	700
0 100	200 300	400 500	600	700