COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

ENGINEERINGBOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/5-2009

PROJECT LOCATION		BRUCE HIGHWAY (COOROY - CURRA) SECTION A GEOTECHNICAL INVESTIGATION COORDINATES483338											3.8 E; 7081186.9	
				25.00	SURFACE R.L. 117.42m PLUNGE _			DATE ST	— – TARTED _				MGA94	
JOB			10A/901									DRILLER	R & D Drilling	
DEPTH (m)	R.L. (m)	MCGE COER W() WCG WCAH BORING WCAH BORING		SAMPLE	MATERIAL DESCRIPTION			INTACT STRENGTH	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS			SAMPLES
0	117.42	7}8	REC %	SA	Clayey SILT (Colluvium)	LITHOLOGY	5 8		11111	20				/S = _
- - - - - - - -	4			Α	Brown to grey, moist, firm, intermediate plasticity, traces of organics.		(CI- ML)						2,3,4 N=7	SPT
-								‡						-
-2	115.92			В	PHYLLITE (XW) Generally exhibits the engineering properties of pale brown, moist, very stiff to hard clayey SILT. Low to intermediate plasticity, rock fabric visible in parts.	*********	xw	-					6,10,11 N=21	SPT
-	114.42			С		******							13,25,32 N>50	SPT
-3 - - -	111.72		(0) 100 (0)		PHYLLITE (MW) Brown to grey-brown, fine grained. Weakly foliated, dipping at 60-70°.	******						ls(50) = 0.02MPa	0 -
- -4 - -			100 (45)		Defects close to medium spacing. Prominant defect sets dipping at 70° and along foliations. Defect surfaces clay infilled and iron stained.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					– Broken Z – Clay sea		50) = 0.68MPa	x -
- - -5 - -			100 (73)			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							50) = 0.11MPa 50) = 0.36MPa	o -
-6 6						}	MVV					25.00	50) = 0.14MPa 50) = 1.15MPa	o _
-7			(70)		Detailed defect descriptions shown on Form GEOT533/8 attached.	} }}}}}}								
8			100 (63)			} }}}}}				70 <u>5</u>]– Sheared	zone	50) = 0.30MPa	x -
»						}					Disturbed brecciate	ls(d zone, clay ed phyllite, 6	50) = 0.05MPa lined, 0°	0 . -
10	107.42		100		Derehole terminated at 40-	***							50) = 0.61MPa	х -
F	REMARKS	<u>Detai</u>	led defec	t de	sPAPABALE AF THE MIRATE AFT AFT GEOT 533/8 attac	hed.							LOGGED BY AN	

Bruce Highway Upgrade (Cooroy - Curra) Section A Project:

Borehole No: BH50 Start Depth: 3.00m Finish Depth: Project No: 10.00m FG5825

H No: 10601

GEOTECHNICAL BRANCH LABORATORY

Materials Services - Brisbane 35 Butterfield Street, HERSTON Q 4006 Phone: (07) 3115 3035 Fax: (07) 3115 3011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH GEOTECHNIICAL TERMS AND SYMBOLS – FORM: GEOT 017/5 – 2009

BOREHOLE NO.: BH 50

SHEET: 1 of 2

REFERENCE NO.: H10601

PROJECT: Bruce Highway (Cooroy- Curra) Section A Geotechnical Investigation

LOCATION: Cut 16

PROJECT NO.: FG5825 SURFACE R.L.: 117.42 DRILLER: R & D Drilling

JOB NO.: 128/10A/901 DATUM: MGA94 DATE DRILLED: 14/08/09

DEPTH	DEFECT TYPE	DIP°	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
3.00-3.27	BZ-DI						
3.36	DI						
3.45	J	80	Pl	S	0	FeSt	Cl, <1mm
3.51	DI						
3.55	J	50	PI	S	С	FeSt	Cl, <1mm
3.61-3.77	BZ-DI						
3.90	J	90	Un-St	SR	С	W	
3.97	J	60	Un	SR	С	W	
4.14	J	35	PI	SR	С	W	CI, 2mm
4.23-4.31	J	50	PI	S	С	W, FeSt	CI, 70mm
4.41	J	55	PI	S	С		CI, 2mm
4.44	J	70	Un	S	С	W	CI, 2mm
4.57	J	80	Un	SR	С	FeSt	CI, 1mm
4.70	J	60-70	PI		С		Rehealed, Cl. 5-10mm
4.80	J	75	PI	S	С	W	
5.01	J	40	PI	S	С	FeSt, W	
5.06	J	80	Un	SR	С	FeSt, W	
5.19	J	55	St	SR	С	W	

Abbreviations (as per F. GEOT 017/5 - 2009)

	ROUGHNESS		WALL ALTERATIONS		TYPE	OTHER		
R	Rough	FeSt	Iron Stained	J, Js	Joint, Joints	CI	Clay Infill	
Sr	Slightly Rough	W	Weathered	В	Bedding	CLy	Clayey	
S	Smooth	Smn	Secondary Mineralisation	ВР	Bedding Parting	Co	Coal Seam	
SL	Slickensided	Cn	Clean	FP	Foliation Parting	Carb	Carbonaceous	
РО	Polished	MnSt	Manganese Stained	LP	Lamination Parting	SI	Sand Infill	
	PLANARITY		APERTURE		Cleavage	QZ	Quartz	
PI	Planar	С	Closed	Fr	Fracture	CA	Calcite	
St	Stepped	0	Open	SZ	Sheared Zone	Chl	Chlorite	
Un	Undulating	F	Filled	CZ	Crushed Zone	In	Incipient	
Cu	Curved	T	Tight	BZ	Broken Zone	Int	Intersecting	
lr	Irregular			HFZ	Highly Fractured Zone	Lam (s)	Lamination (s)	
- 10				WS	Weathered Seam	Di	Drilling Induced	
				Vn	Vein	Н	Horizontal	
20117-7420						V	Vertical	

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

 BOREHOLE NO.:
 BH 50

 SHEET:
 2 of 2

REFERENCE NO.: H10601

DEPTH	DEFECT TYPE	DIP°	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
5.25	J	35	PI	S	С	Iron Coating	
5.29	J	75	PI	S	С	FeSt, MnSt	
5.86	J	30	Un	R	С	FeSt, W	
6.00	J	60	Un	R	0	W	
6.16	QZ	75	PI		С		Rehealed 2mm wide
6.32	J	35	PI	S	С	FeSt	CI, <1mm
6.38	J	75	Un		С		CI, 2-4mm
6.52	J	40	PI	SR	С		CI, 2mm
6.56	J	45	PI		С		Rehealed
6.61	J	30	PI	R	С	2000	CI, 2mm
6.62	J	25	PI	R	С		CI, 2mm
6.67	J	80	Un	S	С		CI, 1mm
7.08-7.09	CZ	20	PI	S	С		
7.30	J	40	PI	S	С		CI, 2-30mm
7.38	J	85	PI	S	С	MnSt	
7.44	J	25	PI	S	С	FeSt, MnSt	
7.93	J	60	Un	SR	С		
8.18	J	60	Un	S	С	W	Crushed rock in defect
8.29	J	50	PI		С		Rehealed
8.36	J	60	Un	S	С	W	
8.38	J	15	PI		С		Rehealed
8.85	J	40	PI	R	С	FeSt, W	
9.03	DI						
9.19	J	60	Un	S	С		CI, 2mm
9.32	J	55	Un		С		CI, 10mm
9.37	J	35-40	PI		С		CI, 10mm
9.42	J	50	PI	-	С		
9.50	J	70	Un-St	SR	С		
9.65	J	65	PI		С		CI, 15mm
9.73	J	50-80	Un	S	С		
9.78	J	20	PI	SR	С	20,000	