COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

ENGINEERING BOREHOLE

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH129
SHEET	_1_ of _3_
REFERENCE No	H9438

PROJECT GATEWAY UPGRADE PROJECT GEOTECHNICAL INVESTIGATION - NORTHERN SECTION LOCATION CONTROL LINE: MCAO - Ch. 23355.3 - OFFSET 4.9 R COORDINATES 9427.5 E; 173604.6 N SURFACE R.L. __1.68_ __ PROJECT No FM2055 DATE STARTED _18/8/04___ DATUM SETP DATUM _AHD _. JOB No DATE COMPLETED 18/8/04 DRILLER R&D DRILLING PTY LTD INTACT DEFECT ADDITIONAL DATA (m) ()% SPACING STRENGTH 507 DEPTH (m) MATERIAL (mm) AND SAMPLE DESCRIPTION AUGER CASIN(WASH CORE SAMPL TESTS USC WEAT CORE TEST RESULTS REC % 1.68 0 SANDY SILTY CLAY - TOPSOIL Dark grey to mottled orange, moist, soft to firm, high plasticity, fine to coarse sand. CI $\sum 7/9/04$ SPT ✓ 18/8/04 -0.02 SAND / CLAYEY SAND - ALLUVIUM Orange grey to orange brown, wet, mainly loose to medium dense. 2,2,2 SPT Minor fine fraction. 3,5,6 SPT Becoming medium dense with depth. 4,5,6 N=11 SPT GATEWAY NORTHERN UPGRADE GPJ ENG BOREHOLE FINAL GDT 28/4/05 SPT SILTY SAND - ALLUVIUM Pale grey to orange brown, slightly moist, mainly very stiff. 4.5.10 SPT Fine grained sand, slightly clayey silt towards bottom. SM BOREHOLE WITH LITHOLOGY 8,9,13 SPT REMARKS Defect angles have been measured with respect to a horizontal plane. LOGGED BY B.Woodgate & A.Dissanayake

BOREHOLE WITH LITHOLOGY GATEWAY NORTHERN UPGRADE GPJ ENG BOREHOLE FINAL GDT 28/4/05

ENGINEERING BOREHOLE

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

PRO.	JECT	<u>GA</u> T	<u>EWAY l</u>	JPG	RADE PROJECT GEOTECHNICAL INVESTI	GA]	ĪŌN	- NORTHERN SECT	1 <u>0</u> N		
OCATION <u>CONTROL LINE: MCAO - Ch. 23355.3 - OFFSET 4.9 R</u> COORDINATES <u>9427.5 E; 173604.6 N</u> PROJECT NO <u>FM2055</u> SURFACE R.L. <u>1.68</u> DATE STARTED <u>18/8/04</u> DATUM <u>SETP</u>											
		_F <u>M</u> 2	055					ATE STARTED 18/8/9			
JOB I	OB No DATUM AHD DATE COMPLETED 18/8/04 DRILLER R&D DRILLING PTY LT										
DEPTH (m)	R L (m)	AUGER CASING WASH BORING	RQD () % CORE REC %	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	INTACT DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES TESTS
-				7	SILTY SAND - ALLUVIUM (As above)			+ + + + + + + +		7,10,13 N≃23	SPT
-11	<i>-</i> 11.32	A CONTRACT OF THE PROPERTY OF		1			SM	\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5,9,9 N=18	SPT
- 13		15 1. V.		10 °	SANDY CLAY - ALLUVIUM Pale grey, moist to slightly dry, very stiff, high plasticity.		CI	+ + + + + + + + + + + + + + + + + + +	 -	4,8,10 N=18	SPT
-14	<u>-12.32</u>			Ŝ.	SANDY SILTY CLAY - ALLUVIUM Grey brown to dark mottled brown, moist to mainly dry, mainly very stiff. Frequent irregular mottling, some concretions and some Mn oxide nodules.					6,8,11 N≖19	SPT
- 16 - 16 							CL	++++++++++++++++++++++++++++++++++++++		7,10,14 N=24	SPT
- 18										7,10,14 N=24	SPT
- 19	-18.07							+		7,11,16 N=27	SPT
20	-18.32				SANDSTONE (See next page)		XW	Į Ŧ			
REMARKS Defect angles have been measured with respect to a horizontal plane. LOGGED BY B.Woodgate & A.Dissanayake											

ENGINEERING BOREHOLE

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH129
SHEET	_3_ of _3_
REFERENCE No	H9438

PROJECT LOCATION PROJECT N JOB No	<u>CONTE</u>	ROL LI	NE:	RADE PROJECT GEOTECHNICAL INVEST MCAO - Ch. 23355.3 - OFFSET 4.9 R SURFACE R.L. <u>1.68</u> DATUM <u>AHD</u>		D		CC 04	DORDINATES 9427.5 E, 173604.6 N DATUM <u>SETP</u>	
(H) HLdd GD -18.3	JGER ASING ASH BORING DRE DRILLING	RQD ()% CORE REC %	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	INTACT DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES TESTS
-18.8		(89)		SANDSTONE FINE TO MEDIUM GRAINED, MAINLY LAMINATED TO MASSIVE, POORLY CEMENTED ROCK. XW: Possible XW rock. MW: Orange brown to blue brown, mainly laminated to massive, mainly medium strength. Some carbonaceous laminations. Defects - Generally rare Drilling induced lamination partings		xw			Drilling record only Is(50)=0.93 MPa Is(50)=0.90 MPa	0 x
-23		100 (100)		<10deg (1-2/m).					Is(50)=0.53 MPa Is(50)=0.21 MPa Is(50)=0.53 MPa Is(50)=0.89 MPa Is(50)=0.32 MPa Is(50)=0.86 MPa	x 0 x 0 x 0 x 0 x 1
-24 24 	\$1 \tag{2.5}			SW: Dark grey to blue grey, laminated to massive, mainly medium strength. Frequent carbonaceous laminations and occasional scattered rip-up clasts. Defects - Generally rare. - Occasional drilling induced lamination partings 20-40deg (1/m).		sw			IS(50)=0.52 MPa Is(50)=0.69 MPa Is(50)=0.73 MPa Is(50)=0.12 MPa MW sandstone band	0 x 0 x
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	, 152.4. 142. 1	100 (100)				SW			ls(50)=0.52 MPa ls(50)=0.34 MPa	0 - X -
	:					sw			ls(50)=1.60 MPa ls(50)=0.81 MPa	0] X]
27									Is(50)=0.65 MPa Is(50)=0.47 MPa Is(50)=0.53 MPa	0 - X - 0 -
25 - 25 - 25 - 27 - 26 - 27 - 27 - 28 - 27 - 28 - 27 - 28 - 28	2	100		Borehole terminated at 27.6m					S(50)=0.58 MPa	× -
REMARK	S <u>Defect</u> a	angles I	have	been measured with respect to a horizontal plane.					LOGGED BY B.Woodgate & A.Dissa	nayake

Project: Gateway Upgrade Project Geotechnical Investigation

Borehole No: BH 129

Start Depth: 20.50m
Finish Depth: 27.50m
Project No: FM2055
H No: 9438

